Description
Annexin V-FITC/PI Apoptosis Detection Kit uses FITC-labeled Annexin V as a probe to detect early apoptosis of cells.
The detection principle is that in normal living cells, phosphotidylserine (PS) is located on the inner side of the cell membrane, but in early apoptotic cells, PS reverses from the inner side to the surface of the cell membrane and is exposed to the extracellular environment. Annexin V is a Ca2+ -dependent phospholipid binding protein with a molecular weight of 35-36 kDa. Annexin V is a Ca2+ -dependent phospholipid binding protein with a high affinity for PS and binds to the membranes of early-apoptotic cells via externally exposed phosphatidylserine.
In addition, Propidium Iodide (PI) is provided in this kit to distinguish between surviving early cells and necrotic or late apoptotic cells. PI is a kind of nucleic acid dye, which can not penetrate the intact cell membrane of normal cells or early apoptotic cells, but can penetrate the cell membrane of late apoptotic and necrotic cells and make the nucleus red. Therefore, when Annexin V was used in combination with PI, PI was excluded from living cells (Annexin V-/PI-) and early apoptotic cells (Annexin V+/PI-). The apoptotic cells and necrotic cells were double positive by FITC and PI binding staining (Annexin V+/PI+).
This kit can be used for flow cytometry and fluorescence microscopy.
Features
- The reagents in this kit are provided in liquid form for easy use.
- The kit can be used for a variety of purposes: flow cytometry, fluorescence microscopy for detection.
- Under the fluorescence microscope, the color distinction is obvious.
Applications
- This kit can be used for flow cytometry and fluorescence microscopy.
- This kit can detect the early apoptosis of cells.
- This kit can distinguish between late apoptotic and necrotic cells.
Specifications
Application | The verified application of the kit was to detect apoptotic cells by flow cytometry or immunofluorescence cytology. |
Packing form | Bottle |
Components
Component No. | Name | 40302ES20 (20T) | 40302ES50 (50T) | 40302ES60 (100T) |
40302-A | Annexin V-FITC | 100 μL | 250 μL | 500 μL |
40302-B | PI Staining Solution | 200 μL | 500 μL | 1.0 mL |
40302-C | 1×Binding Buffer | 10 mL | 25 mL | 50 mL |
Shipping and Storage
The product is shipped with dry ice and can be stored at -15℃ ~ -25℃ for 1 year.
[1] Du Y, Liang Z, Wang S, et al. Human pluripotent stem-cell-derived islets ameliorate diabetes in non-human primates. Nat Med. 2022;28(2):272-282. doi:10.1038/s41591-021-01645-7(IF:53.440)
[2] Chen Q, Zhang F, Dong L, et al. SIDT1-dependent absorption in the stomach mediates host uptake of dietary and orally administered microRNAs. Cell Res. 2021;31(3):247-258. doi:10.1038/s41422-020-0389-3(IF:25.617)
[3] Wang Z, Yu L, Wang Y, et al. Dynamic Adjust of Non-Radiative and Radiative Attenuation of AIE Molecules Reinforces NIR-II Imaging Mediated Photothermal Therapy and Immunotherapy. Adv Sci (Weinh). 2022;9(8):e2104793. doi:10.1002/advs.202104793(IF:16.806)
[4] Zhang M, Shao W, Yang T, et al. Conscription of Immune Cells by Light-Activatable Silencing NK-Derived Exosome (LASNEO) for Synergetic Tumor Eradication [published online ahead of print, 2022 Jun 4]. Adv Sci (Weinh). 2022;e2201135. doi:10.1002/advs.202201135(IF:16.806)
[5] Wang Z, Gong X, Li J, et al. Oxygen-Delivering Polyfluorocarbon Nanovehicles Improve Tumor Oxygenation and Potentiate Photodynamic-Mediated Antitumor Immunity. ACS Nano. 2021;15(3):5405-5419. doi:10.1021/acsnano.1c00033(IF:15.881)
[6] Li Y, Cui K, Zhang Q, et al. FBXL6 degrades phosphorylated p53 to promote tumor growth. Cell Death Differ. 2021;28(7):2112-2125. doi:10.1038/s41418-021-00739-6(IF:15.828)
[7] Li X, Yong T, Wei Z, et al. Reversing insufficient photothermal therapy-induced tumor relapse and metastasis by regulating cancer-associated fibroblasts. Nat Commun. 2022;13(1):2794. Published 2022 May 19. doi:10.1038/s41467-022-30306-7(IF:14.919)
[8] Chen YY, Ge JY, Zhu SY, Shao ZM, Yu KD. Copy number amplification of ENSA promotes the progression of triple-negative breast cancer via cholesterol biosynthesis. Nat Commun. 2022;13(1):791. Published 2022 Feb 10. doi:10.1038/s41467-022-28452-z(IF:14.919)
[9] Wang XS, Zeng JY, Li MJ, Li QR, Gao F, Zhang XZ. Highly Stable Iron Carbonyl Complex Delivery Nanosystem for Improving Cancer Therapy. ACS Nano. 2020;14(8):9848-9860. doi:10.1021/acsnano.0c02516(IF:14.588)
[10] Wang M, Zhang L, Cai Y, et al. Bioengineered Human Serum Albumin Fusion Protein as Target/Enzyme/pH Three-Stage Propulsive Drug Vehicle for Tumor Therapy [published online ahead of print, 2020 Nov 17]. ACS Nano. 2020;10.1021/acsnano.0c07610. doi:10.1021/acsnano.0c07610(IF:14.588)
[11] Deng RH, Zou MZ, Zheng D, et al. Nanoparticles from Cuttlefish Ink Inhibit Tumor Growth by Synergizing Immunotherapy and Photothermal Therapy. ACS Nano. 2019;13(8):8618-8629. doi:10.1021/acsnano.9b02993(IF:13.903)
[12] Zhao H, Xu J, Huang W, et al. Spatiotemporally Light-Activatable Platinum Nanocomplexes for Selective and Cooperative Cancer Therapy. ACS Nano. 2019;13(6):6647-6661. doi:10.1021/acsnano.9b00972(IF:13.903)
[13] Zhang C, Gao F, Wu W, et al. Enzyme-Driven Membrane-Targeted Chimeric Peptide for Enhanced Tumor Photodynamic Immunotherapy. ACS Nano. 2019;13(10):11249-11262. doi:10.1021/acsnano.9b04315(IF:13.903)
[14] Wan SS, Cheng Q, Zeng X, Zhang XZ. A Mn(III)-Sealed Metal-Organic Framework Nanosystem for Redox-Unlocked Tumor Theranostics. ACS Nano. 2019;13(6):6561-6571. doi:10.1021/acsnano.9b00300(IF:13.903)
[15] Wei JL, Wu SY, Yang YS, et al. GCH1 induces immunosuppression through metabolic reprogramming and IDO1 upregulation in triple-negative breast cancer. J Immunother Cancer. 2021;9(7):e002383. doi:10.1136/jitc-2021-002383(IF:13.751)
[16] Wang L, Qin W, Xu W, et al. Bacteria-Mediated Tumor Therapy via Photothermally-Programmed Cytolysin A Expression. Small. 2021;17(40):e2102932. doi:10.1002/smll.202102932(IF:13.281)
[17] Wan SS, Zhang L, Zhang XZ. An ATP-Regulated Ion Transport Nanosystem for Homeostatic Perturbation Therapy and Sensitizing Photodynamic Therapy by Autophagy Inhibition of Tumors. ACS Cent Sci. 2019;5(2):327-340. doi:10.1021/acscentsci.8b00822(IF:12.837)
[18] Sun D, Zou Y, Song L, et al. A cyclodextrin-based nanoformulation achieves co-delivery of ginsenoside Rg3 and quercetin for chemo-immunotherapy in colorectal cancer. Acta Pharm Sin B. 2022;12(1):378-393. doi:10.1016/j.apsb.2021.06.005(IF:11.614)
[19] Yang Y, Hu D, Lu Y, et al. Tumor-targeted/reduction-triggered composite multifunctional nanoparticles for breast cancer chemo-photothermal combinational therapy. Acta Pharm Sin B. 2022;12(6):2710-2730. doi:10.1016/j.apsb.2021.08.021(IF:11.614)
[20] Hu Q, Jia L, Zhang X, Zhu A, Wang S, Xie X. Accurate construction of cell membrane biomimetic graphene nanodecoys via purposeful surface engineering to improve screening efficiency of active components of traditional Chinese medicine. Acta Pharm Sin B. 2022;12(1):394-405. doi:10.1016/j.apsb.2021.05.021(IF:11.614)
[21] Wang M, Xu Y, Zhang Y, et al. Deciphering the autophagy regulatory network via single-cell transcriptome analysis reveals a requirement for autophagy homeostasis in spermatogenesis. Theranostics. 2021;11(10):5010-5027. Published 2021 Mar 5. doi:10.7150/thno.55645(IF:11.556)
[22] Xu X, Han C, Zhang C, Yan D, Ren C, Kong L. Intelligent phototriggered nanoparticles induce a domino effect for multimodal tumor therapy. Theranostics. 2021;11(13):6477-6490. Published 2021 Apr 19. doi:10.7150/thno.55708(IF:11.556)
[23] Fan Q, Zuo J, Tian H, et al. Nanoengineering a metal-organic framework for osteosarcoma chemo-immunotherapy by modulating indoleamine-2,3-dioxygenase and myeloid-derived suppressor cells. J Exp Clin Cancer Res. 2022;41(1):162. Published 2022 May 3. doi:10.1186/s13046-022-02372-8(IF:11.161)
[24] Lei X, Cao K, Chen Y, et al. Nuclear Transglutaminase 2 interacts with topoisomerase II⍺ to promote DNA damage repair in lung cancer cells. J Exp Clin Cancer Res. 2021;40(1):224. Published 2021 Jul 5. doi:10.1186/s13046-021-02009-2(IF:11.161)
[25] Xu L, Wang Y, Song E, Song Y. Nucleophilic and redox properties of polybrominated diphenyl ether derived-quinone/hydroquinone metabolites are responsible for their neurotoxicity. J Hazard Mater. 2021;420:126697. doi:10.1016/j.jhazmat.2021.126697(IF:10.588)
[26] Zhang C, Peng SY, Hong S, et al. Biomimetic carbon monoxide nanogenerator ameliorates streptozotocin induced type 1 diabetes in mice. Biomaterials. 2020;245:119986. doi:10.1016/j.biomaterials.2020.119986(IF:10.317)
[27] Zhang L, Cheng Q, Li C, Zeng X, Zhang XZ. Near infrared light-triggered metal ion and photodynamic therapy based on AgNPs/porphyrinic MOFs for tumors and pathogens elimination. Biomaterials. 2020;248:120029. doi:10.1016/j.biomaterials.2020.120029(IF:10.317)
[28] Zhang C, Zheng DW, Li CX, et al. Hydrogen gas improves photothermal therapy of tumor and restrains the relapse of distant dormant tumor. Biomaterials. 2019;223:119472. doi:10.1016/j.biomaterials.2019.119472(IF:10.273)
[29] Cheng Q, Yu W, Ye J, et al. Nanotherapeutics interfere with cellular redox homeostasis for highly improved photodynamic therapy. Biomaterials. 2019;224:119500. doi:10.1016/j.biomaterials.2019.119500(IF:10.273)
[30] Zhong H, Huang PY, Yan P, et al. Versatile Nanodrugs Containing Glutathione and Heme Oxygenase 1 Inhibitors Enable Suppression of Antioxidant Defense System in a Two-Pronged Manner for Enhanced Photodynamic Therapy. Adv Healthc Mater. 2021;10(19):e2100770. doi:10.1002/adhm.202100770(IF:9.933)
[31] Dong J, Zhu C, Zhang F, Zhou Z, Sun M. "Attractive/adhesion force" dual-regulatory nanogels capable of CXCR4 antagonism and autophagy inhibition for the treatment of metastatic breast cancer. J Control Release. 2022;341:892-903. doi:10.1016/j.jconrel.2021.12.026(IF:9.776)
[32] Hu X, Tian H, Jiang W, Song A, Li Z, Luan Y. Rational Design of IR820- and Ce6-Based Versatile Micelle for Single NIR Laser-Induced Imaging and Dual-Modal Phototherapy. Small. 2018;14(52):e1802994. doi:10.1002/smll.201802994(IF:9.598)
[33] Yao Y, Li P, He J, Wang D, Hu J, Yang X. Albumin-Templated Bi<sub>2</sub>Se<sub>3</sub>-MnO<sub>2</sub> Nanocomposites with Promoted Catalase-Like Activity for Enhanced Radiotherapy of Cancer. ACS Appl Mater Interfaces. 2021;13(24):28650-28661. doi:10.1021/acsami.1c05669(IF:9.229)
[34] Li X, Gui R, Li J, et al. Novel Multifunctional Silver Nanocomposite Serves as a Resistance-Reversal Agent to Synergistically Combat Carbapenem-Resistant Acinetobacter baumannii. ACS Appl Mater Interfaces. 2021;13(26):30434-30457. doi:10.1021/acsami.1c10309(IF:9.229)
[35] Liu J, Zhou B, Guo Y, et al. SR-A-Targeted Nanoplatform for Sequential Photothermal/Photodynamic Ablation of Activated Macrophages to Alleviate Atherosclerosis [published online ahead of print, 2021 Jun 16]. ACS Appl Mater Interfaces. 2021;10.1021/acsami.1c06380. doi:10.1021/acsami.1c06380(IF:9.229)
[36] Ye R, Zheng Y, Chen Y, et al. Stable Loading and Delivery of Melittin with Lipid-Coated Polymeric Nanoparticles for Effective Tumor Therapy with Negligible Systemic Toxicity. ACS Appl Mater Interfaces. 2021;13(47):55902-55912. doi:10.1021/acsami.1c17618(IF:9.229)[37] Luo Q, Lin L, Huang Q, et al. Dual stimuli-responsive dendronized prodrug derived from poly(oligo-(ethylene glycol) methacrylate)-based copolymers for enhanced anti-cancer therapeutic effect. Acta Biomater. 2022;143:320-332. doi:10.1016/j.actbio.2022.02.033(IF:8.947)
[38] Sun J, Liu J, Gao C, et al. Targeted delivery of PARP inhibitors to neuronal mitochondria via biomimetic engineered nanosystems in a mouse model of traumatic brain injury. Acta Biomater. 2022;140:573-585. doi:10.1016/j.actbio.2021.12.023(IF:8.947)
[39] Gao J, Liu J, Meng Z, et al. Ultrasound-assisted C<sub>3</sub>F<sub>8</sub>-filled PLGA nanobubbles for enhanced FGF21 delivery and improved prophylactic treatment of diabetic cardiomyopathy. Acta Biomater. 2021;130:395-408. doi:10.1016/j.actbio.2021.06.015(IF:8.947)
[40] Xia F, Hou W, Liu Y, et al. Cytokine induced killer cells-assisted delivery of chlorin e6 mediated self-assembled gold nanoclusters to tumors for imaging and immuno-photodynamic therapy. Biomaterials. 2018;170:1-11. doi:10.1016/j.biomaterials.2018.03.048(IF:8.806)
[41] Xu M, Zhao X, Zhao S, et al. Landscape analysis of lncRNAs shows that DDX11-AS1 promotes cell-cycle progression in liver cancer through the PARP1/p53 axis. Cancer Lett. 2021;520:282-294. doi:10.1016/j.canlet.2021.08.001(IF:8.679)
[42] Hu XK, Rao SS, Tan YJ, et al. Fructose-coated Angstrom silver inhibits osteosarcoma growth and metastasis via promoting ROS-dependent apoptosis through the alteration of glucose metabolism by inhibiting PDK. Theranostics. 2020;10(17):7710-7729. Published 2020 Jun 19. doi:10.7150/thno.45858(IF:8.579)
[43] Wu D, Zhu ZQ, Tang HX, et al. Efficacy-shaping nanomedicine by loading Calcium Peroxide into Tumor Microenvironment-responsive Nanoparticles for the Antitumor Therapy of Prostate Cancer. Theranostics. 2020;10(21):9808-9829. Published 2020 Aug 2. doi:10.7150/thno.43631(IF:8.579)
[44] Hong Y, Han Y, Wu J, et al. Chitosan modified Fe<sub>3</sub>O<sub>4</sub>/KGN self-assembled nanoprobes for osteochondral MR diagnose and regeneration. Theranostics. 2020;10(12):5565-5577. Published 2020 Apr 15. doi:10.7150/thno.43569(IF:8.579)
[45] Ding MH, Wang Z, Jiang L, et al. The transducible TAT-RIZ1-PR protein exerts histone methyltransferase activity and tumor-suppressive functions in human malignant meningiomas. Biomaterials. 2015;56:165-178. doi:10.1016/j.biomaterials.2015.03.058(IF:8.557)
[46] Liang H, Zhou Z, Luo R, et al. Tumor-specific activated photodynamic therapy with an oxidation-regulated strategy for enhancing anti-tumor efficacy. Theranostics. 2018;8(18):5059-5071. Published 2018 Oct 5. doi:10.7150/thno.28344(IF:8.537)
[47] Zhou Z, Zhang Q, Zhang M, et al. ATP-activated decrosslinking and charge-reversal vectors for siRNA delivery and cancer therapy. Theranostics. 2018;8(17):4604-4619. Published 2018 Sep 9. doi:10.7150/thno.26889(IF:8.537)
[48] Qi HZ, Ye YL, Suo Y, et al. Wnt/β-catenin signaling mediates the abnormal osteogenic and adipogenic capabilities of bone marrow mesenchymal stem cells from chronic graft-versus-host disease patients. Cell Death Dis. 2021;12(4):308. Published 2021 Mar 23. doi:10.1038/s41419-021-03570-6(IF:8.469)
[49] He D, Ma Z, Xue K, Li H. Juxtamembrane 2 mimic peptide competitively inhibits mitochondrial trafficking and activates ROS-mediated apoptosis pathway to exert anti-tumor effects. Cell Death Dis. 2022;13(3):264. Published 2022 Mar 24. doi:10.1038/s41419-022-04639-6(IF:8.469)
[50] Xia J, Zhang J, Wang L, et al. Non-apoptotic function of caspase-8 confers prostate cancer enzalutamide resistance via NF-κB activation. Cell Death Dis. 2021;12(9):833. Published 2021 Sep 4. doi:10.1038/s41419-021-04126-4(IF:8.469)
Payment & Security
Your payment information is processed securely. We do not store credit card details nor have access to your credit card information.